Signaling via dopamine D1 and D3 receptors oppositely regulates cocaine-induced structural remodeling of dendrites and spines.

نویسندگان

  • Lei Zhang
  • Juan Li
  • Nuyun Liu
  • Bin Wang
  • Jingjing Gu
  • Min Zhang
  • Zhitao Zhou
  • Yong Jiang
  • Lin Zhang
  • Lu Zhang
چکیده

Repeated exposure to cocaine can induce persistent alterations in the brain. The structural remodeling of dendrites and dendritic spines is thought to play a critical role in cocaine addiction. We previously demonstrated that signaling via dopamine D1 and D3 receptors have opposite effects on cocaine-induced gene expression. Here, we show that cocaine-induced structural remodeling in the nucleus accumbens (NAc) and caudoputamen (CPu) is mediated by D1 receptors and inhibited by D3 receptors. In addition, chronic exposure to cocaine results in an altered number of asymmetric spine synapses via the actions of both D1 and D3 receptors. The contradictory effects of D1 and D3 receptor signaling on cocaine-induced structural remodeling is associated with NMDA-receptor R1 subunit (NR1) phosphorylation, and is dependent upon the activation of extracellular signal-regulated kinase (ERK). In addition, we found that D1 and D3 receptor signaling has contradictory effects upon the activation of the myocyte enhancer factor 2 (MEF2), which is involved in the dendritic remodeling after cocaine treatment. Together, these data suggest that dopamine D1 and D3 receptors differentially regulate the cocaine-induced structural remodeling of dendrites and spines via mechanisms involving the consecutive actions of NR1 phosphorylation, ERK activation, and MEF2 activity in the NAc and CPu.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors.

Repeated exposure to cocaine can induce neuroadaptations in the brain. One mechanism by which persistent changes occur involves alterations in gene expression mediated by the dopamine receptors. Both the dopamine D1 and D3 receptors have been shown to mediate gene expression changes. Moreover, the D1 and D3 receptors are also coexpressed in the same neurons, particularly in the nucleus accumben...

متن کامل

Cocaine-induced dendritic remodeling occurs in both D1 and D2 dopamine receptor-expressing neurons in the nucleus accumbens.

Repeated exposure to cocaine can induce persistent alterations in the brain's reward system, including increases in the number of dendrites and spine density on medium-sized spiny neurons (MSNs) in the nucleus accumbens (NAc). The structural remodeling of dendrites and spines in the NAc is thought to play a critical role in cocaine addiction. MSNs in the NAc can be classified by expression of e...

متن کامل

Dopamine D1 and D3 Receptors Are Differentially Involved in Cocaine-Induced Reward Learning and Cell Signaling

Memories of learned associations between the rewarding properties of drugs and environmental cues contribute significantly to craving and relapse in humans. We have investigated how dopamine (DA) D1 and D3 receptors modulate the acquisition and extinction of cocaine-induced reward learning and associated changes in cellular signaling in reward circuits in the brain. We found that D1 receptor mu...

متن کامل

c-Fos facilitates the acquisition and extinction of cocaine-induced persistent changes.

Development of drug addiction involves persistent neurobiological changes. The dopamine D1 receptor is involved in mediating cocaine-induced neuroadaptation, yet the underlying intracellular mechanisms remain unclear. We examined a potential role of the immediate early gene Fos, which is robustly and rapidly induced by cocaine via D1 receptors, in mediating cocaine-induced persistent neurobiolo...

متن کامل

Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuro-Signals

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2012